59 research outputs found

    Local Charge Excesses in Metallic Alloys: a Local Field Coherent Potential Approximation Theory

    Full text link
    Electronic structure calculations performed on very large supercells have shown that the local charge excesses in metallic alloys are related through simple linear relations to the local electrostatic field resulting from distribution of charges in the whole crystal. By including local external fields in the single site Coherent Potential Approximation theory, we develop a novel theoretical scheme in which the local charge excesses for random alloys can be obtained as the responses to local external fields. Our model maintains all the computational advantages of a single site theory but allows for full charge relaxation at the impurity sites. Through applications to CuPd and CuZn alloys, we find that, as a general rule, non linear charge rearrangements occur at the impurity site as a consequence of the complex phenomena related with the electronic screening of the external potential. This nothwithstanding, we observe that linear relations hold between charge excesses and external potentials, in quantitative agreement with the mentioned supercell calculations, and well beyond the limits of linearity for any other site property.Comment: 11 pages, 1 table, 7 figure

    Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation

    Get PDF
    We have used the locally self-consistent Green's function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine the Madelung potential energy of a random alloy in the single-site mean field approximation which makes the conventional single-site density-functional- theory coherent potential approximation (SS-DFT-CPA) method practically identical to the supercell LSGF method with a single-site local interaction zone that yields an exact solution of the DFT problem. We demonstrate that the basic mechanism which governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short-ranged. In the atomic sphere approximation, this screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-filed approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure

    Numerical study of vortex system quantum melting

    Full text link
    We report a numerical study of the vortex system in the two dimensional II-type superconductors. We have proposed a phenomenological model that takes into account quantum fluctuations of Abrikosov's vortices. The results of the quantum Monte-Carlo simulations by the SSE algorithm show that the thermal fluctuations are dominated by quantum fluctuations at low temperatures. In particular, we demonstrate the possibility of the quantum melting transition for vortex system in the temperature region where thermal melting transition is improbable

    Screened Coulomb interactions in metallic alloys: II Screening beyond the single-site and atomic sphere approximations

    Get PDF
    A quantitative description of the configurational part of the total energy of metallic alloys with substantial atomic size difference cannot be achieved in the atomic sphere approximation: It needs to be corrected at least for the multipole moment interactions in the Madelung part of the one-electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless a simple parameterization of the screened Coulomb interactions for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parameterization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system.Comment: 24 pages, 2 figure

    On the theory of superconductivity in ferromagnetic superconductors with triplet pairing

    Full text link
    We point out that ferromagnetic superconductors with triplet pairing and strong spin-orbit coupling are even in the simplest case at least two-band superconductors. The Gor'kov type formalism for such superconductors is developed and the Ginzburg-Landau equations are derived. The dependence of the critical temperature on the concentration of ordinary point-like impurities is found. Its nonuniversality could serve as a qualitative measure of the two-band character of ferromagnetic superconductors. The problem of the upper critical field determination is also discussed.Comment: 8 pages, no figure; important changes with respect to the previous versions due to the correction of a mistake: in this new version, a more general form is considered for the order parameter (the two-components of the order parameter were considered before as equal, which is in general not true) ; submitted to Physical Review

    Equation of state and elastic properties of face-centered-cubic FeMg alloy at ultrahigh pressures from first-principles

    Full text link
    We have calculated the equation of state and elastic properties of face-centered cubic Fe and Fe-rich FeMg alloy at ultrahigh pressures from first principles using the Exact Muffin-Tin Orbitals method. The results show that adding Mg into Fe influences strongly the equation of state, and cause a large degree of softening of the elastic constants, even at concentrations as small as 1-2 at. %. Moreover, the elastic anisotropy increases, and the effect is higher at higher pressures.Comment: 6 figure

    Transverse spin dynamics in a spin-polarized Fermi liquid

    Full text link
    The linear equations for transverse spin dynamics in weakly polarised degenerate Fermi liquid with arbitrary relationship between temperature and polarization are derived from Landau-Silin phenomenological kinetic equation with general form of two-particle collision integral. The temperature and polarization dependence of the spin current relaxation time is established. It is found in particular that at finite polarization transverse spin wave damping has a finite value at T=0. The analogy between temperature dependences of spin waves attenuation and ultrasound absorption in degenerate Fermi liquid at arbitrary temperature is presented. We also discuss spin-polarized Fermi liquid in the general context of the Fermi-liquid theory and compare it with "Fermi liquid" with spontaneous magnetization.Comment: 10 page

    Phase stability and electronic structure of iridium metal at the megabar range

    Get PDF
    [EN] The 5d transition metals have attracted specific interest for high-pressure studies due to their extraordinary stability and intriguing electronic properties. In particular, iridium metal has been proposed to exhibit a recently discovered pressure-induced electronic transition, the so-called core-level crossing transition at the lowest pressure among all the 5d transition metals. Here, we report an experimental structural characterization of iridium by x-ray probes sensitive to both long- and short-range order in matter. Synchrotron-based powder x-ray diffraction results highlight a large stability range (up to 1.4 Mbar) of the low-pressure phase. The compressibility behaviour was characterized by an accurate determination of the pressure-volume equation of state, with a bulk modulus of 339(3) GPa and its derivative of 5.3(1). X-ray absorption spectroscopy, which probes the local structure and the empty density of electronic states above the Fermi level, was also utilized. The remarkable agreement observed between experimental and calculated spectra validates the reliability of theoretical predictions of the pressure dependence of the electronic structure of iridium in the studied interval of compressions.The authors thank the financial support of the Spanish Ministry of Science, Innovation and Universities, the Spanish Research Agency (AEI), the European Fund for Regional Development (FEDER) under Grant No. MAT2016-75586-C4-1/2-P and the Generalitat Valenciana under Grant Prometeo/2018/123 (EFIMAT). V. M. acknowledges the Juan de la Cierva fellowship (FJCI-2016-27921) and J.A.S. acknowledges the Ramón y Cajal fellowship program (RYC-2015-17482) and Spanish Mineco Project FIS2017-83295-P. We acknowledge the European Synchrotron Radiation Facility for provision of official research beamtimes, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No 2009 00971), Knut and Alice Wallenbergs Foundation Project Strong Field Physics and New States of Matter CoTXS (2014 2019). The interpretation of theoretical results was supported by the Ministry of Science and High Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISIS (No. K2-2019-001) implemented by a governmental decree dated 16 March 2013, No 211.Monteseguro, V.; Sans-Tresserras, JÁ.; Cuartero, V.; Cova, F.; Abrikosov, I.; Olovsson, W.; Popescu, C.... (2019). Phase stability and electronic structure of iridium metal at the megabar range. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-019-45401-xS199Cynn, H., Klepeis, J. E., Yoo, C.-S. & Young, D. A. Osmium has the Lowest Experimentally Determined Compressibility. Phys. Rev. Lett. 88, 135701–135704 (2002).Döhring, T. et al. Prototyping iridium coated mirrors for x-ray astronomy. Proc. SPIE 10235, 1023504–1023511 (2017).Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Phys. B: Condens. Matter 64, 189–193 (1986).Tokura, Y. & Nagaosa, N. Orbital Physics in Transition-Metal Oxides. Science 288, 462–468 (2000).Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature (London) 395, 677–680 (1998).Hrubiak, R., Meng, Y. & Shen, G. Microstructures define melting of molybdenum at high pressures. Nature Commun. 8, 14562–14571 (2017).Cerenius, Y. & Dubrovinsky, L. Compressibility measurements on iridium. J. Alloys Compd. 306, 26–29 (2000).Grussendorff, S., Chetty, N. & Dreysse, H. Theoretical studies of iridium under pressure. J. Phys. Condens. Matter 15, 4127–4134 (2003).Burakovsky, L. et al. Ab initio phase diagram of iridium. Phys. Rev. B 94, 094112–094120 (2016).Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).Tal, A. A. et al. Pressure-induced crossing of the core levels in 5d metals. Phys. Rev. B 93, 205150–205156 (2016).Merkel, S. et al. Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res. 107, 2271–2287 (2002).Greenberg, E. et al. Pressure-Induced Site-Selective Mott Insulator-Metal Transition in Fe2O3. Phys. Rev. X 8, 031059–031071 (2018).Nemoshkalenko, V. V., Mil’man, V. Y., Zhalko-Titarenko, A. V., Antonov, V. N. & Shitikov, Y. L. Pis’ma Zh. Eksp Teor. Fiz 47, 295–297 (1988).Rehr, J. J. & Albers, R. C. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).Poiarkova, A. V. & Rehr, J. J. Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations. Phys. Rev. B 59, 948–957 (1998).Glazyrin, K. et al. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition. Phys. Rev. Lett. 110, 117206–117210 (2013).Sham, T. K. L-edge x-ray-absorption systematics of the noble metals Rh, Pd, and Ag and the main-group metals In and Sn: A study of the unoccupied density of states in 4d elements. Phys. Rev. B 31, 1888–1902 (1985).Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 26, 614–635 (1982).Choy, J.-H., Kim, D.-K., Hwang, S.-H., Demazeau, G. & Jung, D.-Y. the Ir-O Bond Covalency in Ionic Iridium Perovskites. J. Am. Chem. Soc. 117, 8557–8566 (1995).Clancy, J. P. et al. Spin-orbit coupling in iridium-based 5d compounds probed by x-ray absorption spectroscopy. Phys. Rev. B 86, 195131- (2012).Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996).Dewaele, A., Loubeyre, P. & Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112–094119 (2004).Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of twodimensional X-ray diffraction data and data exploration. High Pressure Res. 35, 223–230 (2015).Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. J. Appl. Cryst. 46(2), 544–549 (2013).Birch, F. Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 83, 1257–1268 (1978).Angel, R. J., González-Platas, J. & Alvaro, M. EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr. 229, 405–419 (2014).Mathon, O. et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Radiat. 22, 1548–1554 (2015).Ohfuji, H. et al. "Natural occurrence of pure nano-polycrystalline diamond from impact crater". Scientific Reports. 5: 14702.s, L. D., 2000. J. Alloys Compd. 306, 26–29 (2015).Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–577 (2005).Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität, Wien, Austria. (2001).Perdew, J. P., Burke, S. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996)
    corecore